Classification of Buildings using Google
Street-View

Francisco Lozano, Abhi Kamboj, Cary Chai
EPFL, Lausanne, Switzerland

Abstract—There are currently a very diverse range of building
materials and construction styles used in cities throughout the
world. Being able to track these materials and methods in
buildings is important as it determines the procedures for
rehabilitation and repairs. In order to determine the make of
a building, recent data about the buildings is needed which is
not always readily available. Identifying each building, if not
automatized, would require an enormous amount of manpower.
We hope to automatize this task, providing a framework capable
of fetching images of buildings from Google Street-View and
classifying them.

I. INTRODUCTION

For the purpose of collecting data of the buildings of
Switzerland, together with the Laboratoire dinformatique et
mécanique appliquées a la construction, we were tasked with
capturing images of buildings in Zurich and saving their
locations and characteristics. Data was collected using the
Google Street-View API and several methods were attempted
to manipulate and transform the data sufficiently for the neural
network. Then using classification models, certain characteris-
tics were extracted from the images. The building classification
was broken down into 3 steps, and three corresponding neural
net models. The first task was detecting the buildings in an
image. The second step was distinguishing openings (win-
dows, doors, etc.) on a building to calculate the opening to
facade ratio, a highly important characteristic in determining
the building type. The third step was classifying the buildings
based on the materials they were made of. We have chosen
for these tasks:

« Faster R-CNN ResNet-50 FPN [1]] to extract the buildings
from Google Street-View.

o DeepLabV3 ResNetl01 [2] to differentiate openings on
the facade.

o ResNet-50 [3]] to classify the materials on the facade.

Since this project consisted of characterizing buildings with
specific characteristics there was no pretrained model or
prexisting labeled dataset. Therefore, tools for continuously
sampling images from Google Street-view and an image la-
beling application was created. Labeling images is an arduous
task that had to be done by hand, but many labeled samples
are necessary to train deep learning models. For this reason,
we have studied the effect on the efficacy of the models as the
dataset they are trained on increased.

II. DATA COLLECTION

A large portion of this project was data collection and
refinement for the machine learning models. The first image
generator simply pulled random images of buildings in Zurich
from the Google Street-view API. This method was quick
however it gave images that would make it more difficult
for the neural net. Buildings appeared from different angles
and distortions. In addition, since one goal was to capture the
opening to facade ratio, it was undesirable to capture only part
of the building since different parts of the building might have
disproportional opening to facade ratios, and just the part that
is captured is not representative of the entire building.

To combat this problem, we focused on how to get the
image of the complete building. The Google Street-view API
allows one to query an image by location, heading, field of
view, and a few other parameters. The API was queried at the
same location with various headings such that the camera was
panned around a fixed point, creating a panorama. The image
was then divided to see each side of the road (180 degrees)
individually. As shown in figure [T} this resulting image had
some distortion and although it covered the entire building, it
might have misled the neural network. This also suffers from
the original problem; it captures many different angles of the
buildings which could mess up the opening to facade ratio.
When looking at a building from an angle, the windows in
the front, closer to the observer, are bigger and would count
for a larger percentage of the building. This panorama also
took about 50 images to complete, which is time consuming
and computationally costly. We succeeded on decreasing the
amount of images required to only 3 consecutive images. The
result, shown in figure , has much more distortion then before.

Figure 1. The panoramic output has a much larger field of view and allows
much more information to be captured, however in 2d the fagcade of the
building is distorted and might affect the opening to facade ratio. Additionally,
this higher quality required 50 separate images from the Google Street-view
APL



Figure 2. This is a quick stitch that takes significantly less images (only 3
images) and the image is facing the buildings directly, however, it has some
distortion.

The second and more effective solution to generating suf-
ficient images was to use a preexisting database of coordi-
nates of buildings in Zurich, provided by the Laboratoire
dinformatique et mécanique appliquées a la construction. This
database provided the coordinates of the center of each build-
ing. Using a snap-to-road function which inputs any coordinate
pair and returns the coordinates to the nearest road, Google
Street view APl was used to get the image of the building
at that coordinate. Now the image could be guaranteed to
be facing the building straight on, by calculating the desired
heading of the camera to be perpendicular to the road and
the building. This direction can be calculated by taking the
difference from building coordinates to the corresponding
snapped road coordinates and using basic trigonometry to
calculate the angle relative to North that the building was
at, since North corresponded to zero degrees heading in the
Google Street-view API queries [J3].

Figure 3. In the regular view, less of each building is captured however the
image is taken perpendicular to the facade, which would in theory provide a
more accurate facade to opening ratio.

Although most of the images are captured perpendicular
to the building there are still some issues. Images from the
Google API taken from the sidewalk do not have a fixed
heading of 0 corresponding to North as do those taken from
the road, therefore those images are still not facing directly
towards the building after the heading calculation. Also,
the database of buildings contained more buildings than the
Google Roads API, so there were many times where different
buildings would snap to the same nearest road or calling the
Google Street view API would return the same image. The
data generator was later adjusted so that repeated pictures were
ignored.

ITI. OBJECT DETECTION

For the task of object detection we considered implementing
Faster R-CNN. Faster R-CNN shows no worse accuracy, and
runs quite faster than other state-of-the-art models used for
object detection [4].

To obtain the necessary samples to train the model, we
implemented a multi-platform application capable of browsing
through a directory and allowing you to locate where the
buildings are located using a simple and intuitive interface.

Figure 4. This labeling application was created specifically for this project.
This image shows the object detection labelers which allows a user to click
and drag open a bounding box around the buildings.

This application stores the coordinates and the label of each
bounding box created and stores them with a reference to the
image in a preexisting csv file that will be used to train our
model.

Due to the time intensive nature of our data collection
for this project and our research into state of the art object
detection models, we opted for the Faster R-CNN ResNet-
50 FPN by Torchvision. We trained it on iteratively larger
image sets (500, 1000, and 1500) that we created using
our custom tool from Figure 4. However, we were unable
to get the accuracy to increase using this model and loss
remained constant. We believe that the model implemented
by Torchvision requires fine-tuning to be able to reach a
sufficiently precise model.

== Training Loss == Validation Loss

072

0715

071

0.705

07

2500 5000 7500 10000 12500 15000

Iter



IV. IMAGE SEGMENTATION

For image segmentation, we created a tool to easily label
each image with pixel-wise classes. For this task we selected
three classes:

e 0 - Not building

e 1 - Opening

o 2 - Facade
To label the images we set out to create a painting tool to
quickly set the class of every pixel within an image. This
application browsed through a directory and created a numpy
array containing the pixel-wise labels.

Even with the newly created tools to label images, labeling
one image with precision is very time consuming, ranging
from 2 minutes to 5 minutes for a single image. For that, we
approached the training with the intention of minimizing the
amount of samples as much as possible.

We started with a conservative 30 samples, and we began
to train the model without data augmentation to see how
quickly it overfitted. When the model started showing signs
of overfitting, we increased the dataset size to 100 and started
measuring the accuracy of the model. After that, we waited to
see any signs of overfitting. We quickly saw a drop in accu-
racy. We added Gaussian noise and S&P noise, while addin
random crop transformations. We quickly saw the accuracy
rise, reaching a maximum of 80% accuracy. After the model
started to overfit, we worked to add more precise samples
to finetune the model. The change from rough and imprecise
borders to more precise samples created a soon visible effect
on the model. Decreasing the overall accuracy and a sudden
increase in training loss, while maintaining the validation loss
almost constant [3]].

Seeing the model classify the pixels with 80% accuracy,
we have concluded that not many labeled images are required
to train an accurate model, but the model should be trained
from the beginning using very precise samples, because the
model quickly learns to incorrectly predict borders between

classes and fine-tuning the model once it has already learned
high accuracy is counter-productive.

V. IMAGE CLASSIFICATION

To classify the material the building is made of we required
simple photos of wall textures. Because of that, to avoid unnec-
essary manpower expended on labeling data, we implemented
a downloader that assigns a label index for every string query
and attempts to download as many images as requested from
Google Images using the Google Images API.

Observing the different types of buildings we were observ-
ing, we decided on selecting as possible classes:

o Stone cladding
e Metal siding

o Bricks

« Render

After that we utilised the image fetcher to download around
450 images of each type. As model, we tried both ResNet 50
and ResNet 101 provided by the Torchvision library, both with
Cross Entropy loss and an Adam optimizer. Because of the
dramatic change in size between both models and our limited
GPU memory, the ResNet 101 was trained with half the batch
size. And even though it required much longer to train and
it is more complex, it still provided worse results than the
ResNet 50. 80% [[6]] accuracy opposed to 60% accuracy [[7]] in
the same amount of iterations.

VI. SUMMARY

The Torchvision Faster R-CNN was unable to achieve the
desired results with a small batch size. Regardless, we are
confident in the a Faster R-CNN’s ability of achieving decent
results with more fine-tuning and research. Both the image
segmentation model and the image classifier show promising
results even with limited computing resources. We can say that
with sufficient precise data samples and computing resources,
the framework would achieve its desired goal.

ACKNOWLEDGEMENTS

We would like to acknowledge the host lab for our project
Laboratoire dinformatique et mécanique appliquées a la con-
struction, which provided many resources including the build-
ing database of Zurich and a meeting space. In addition, we
would like to personally thank our project mentor Alireza
Khodaverdian for the advice and guidance throughout the
course of this project. Finally, we would like to acknowledge
the ML CS-433 Course professors and staff for giving us the
freedom and support in conducting this project.

REFERENCES

[1] R. G.J. S. Shaoging Ren, Kaiming He, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Cornell University, 2015.

[2] E. S. H. A. Liang-Chieh Chen, George Papandreou, “Rethinking atrous
convolution for semantic image segmentation,” Cornell University, 2017.

[3] S. R. J. S. Kaiming He, Xiangyu Zhang, “Deep residual learning for
image recognition,” Cornell University, 2015.

[4] “Object detection: speed and accuracy comparison (faster r-cnn, r-fcn, ssd
and yolo),” mc.ai, 2018.



== Training Loss == Validation Loss Accuracy

08 B0%

06 T5%
04 70%
02 65%
0 0%
1000 2000 3000 4000
Iter
Figure 5. Image segmentation progress
== Training Loss == Validation loss Accuracy
0.15 90%
80%
01 70%
|
0%
0.05 50%
40%
0 30%
2500 5000 7500 10000 12500 15000
Iter
Figure 6. ResNet 50 Progress (Batch size 15)
== Training Loss == Validation loss Accuracy
025 60%
) \QAQ :
N N 50%
"m._.-/- P —
015 e —
01
40%
0.05
0 30%
1000 2000 3000 4000 5000 6000 7000

Iter

Figure 7. ResNet 101 Progress (Batch size 7)



	Introduction
	Data Collection
	Object Detection
	Image Segmentation
	Image Classification
	Summary
	References

